Extensions 1→N→G→Q→1 with N=C22×He3 and Q=C2

Direct product G=N×Q with N=C22×He3 and Q=C2
dρLabelID
C23×He372C2^3xHe3216,115

Semidirect products G=N:Q with N=C22×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×He3)⋊1C2 = D4×He3φ: C2/C1C2 ⊆ Out C22×He3366(C2^2xHe3):1C2216,77
(C22×He3)⋊2C2 = He36D4φ: C2/C1C2 ⊆ Out C22×He3366(C2^2xHe3):2C2216,60
(C22×He3)⋊3C2 = He37D4φ: C2/C1C2 ⊆ Out C22×He3366(C2^2xHe3):3C2216,72
(C22×He3)⋊4C2 = C22×C32⋊C6φ: C2/C1C2 ⊆ Out C22×He336(C2^2xHe3):4C2216,110
(C22×He3)⋊5C2 = C22×He3⋊C2φ: C2/C1C2 ⊆ Out C22×He336(C2^2xHe3):5C2216,113

Non-split extensions G=N.Q with N=C22×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×He3).1C2 = C2×C32⋊C12φ: C2/C1C2 ⊆ Out C22×He372(C2^2xHe3).1C2216,59
(C22×He3).2C2 = C2×He33C4φ: C2/C1C2 ⊆ Out C22×He372(C2^2xHe3).2C2216,71
(C22×He3).3C2 = C2×C4×He3φ: trivial image72(C2^2xHe3).3C2216,74

׿
×
𝔽